A Littlewood-Paley inequality for analytic measures
نویسندگان
چکیده
منابع مشابه
Littlewood–Paley Inequality: A Survey
Let Sωf = ∫ ω f̂(ξ)e ixξ dξ be the Fourier projection operator to an interval ω in the real line. Rubio de Francia’s Littlewood Paley inequality [31] states that for any collection of disjoint intervals Ω, we have ∥∥ [∑ ω∈Ω |Sωf | 1/2∥∥ p . ‖f‖p, 2 ≤ p < ∞. We survey developments related to this inequality, including the higher dimensional case, and consequences for multipliers.
متن کاملRubio de Francia’s Littlewood-Paley inequality for operator-valued functions
We prove Rubio de Francia’s Littlewood-Paley inequality for arbitrary disjoint intervals in the noncommutative setting, i.e. for functions with values in noncommutative L-spaces. As applications, we get sufficient conditions in terms of q-variation for the boundedness of Schur multipliers on Schatten classes.
متن کاملNon-Compact Littlewood-Paley Theory for Non-Doubling Measures
We prove weighted Littlewood-Paley inequalities for linear sums of functions satisfying mild decay, smoothness, and cancelation conditions. We prove these for general “regular” measure spaces, in which the underlying measure is not assumed to satisfy any doubling condition. Our result generalizes an earlier result of the author, proved on R with Lebesgue measure. Our proof makes essential use o...
متن کاملIssues related to Rubio de Francia’s Littlewood–Paley inequality
Let Sω f = ∫ ω f̂(ξ)e dξ be the Fourier projection operator to an interval ω in the real line. Rubio de Francia’s Littlewood–Paley inequality (Rubio de Francia, 1985) states that for any collection of disjoint intervals Ω, we have ∥∥∥∥ [∑ ω∈Ω |Sω f | 1/2∥∥∥∥ p ‖f‖p, 2 ≤ p < ∞. We survey developments related to this inequality, including the higher dimensional case, and consequences for multiplie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Arkiv för Matematik
سال: 1982
ISSN: 0004-2080
DOI: 10.1007/bf02390512